| OPERATIONS RESEARCH I | | | | | | | | | | | |---------------------------|---|--|---|--|--|--|--|--|--|--| | 1 | Course Title: | OPERA ⁻ | TIONS RESEARCH I | | | | | | | | | 2 | Course Code: | END3033 | | | | | | | | | | 3 | Type of Course: | Compuls | sory | | | | | | | | | 4 | Level of Course: | First Cycle | | | | | | | | | | 5 | Year of Study: | 3 | | | | | | | | | | 6 | Semester: | 5 | | | | | | | | | | 7 | ECTS Credits Allocated: | 5.00 | | | | | | | | | | 8 | Theoretical (hour/week): | 3.00 | | | | | | | | | | 9 | Practice (hour/week): | 0.00 | | | | | | | | | | 10 | Laboratory (hour/week): | 1 | | | | | | | | | | 11 | Prerequisites: | Introduction to Mathematical Programming | | | | | | | | | | 12 | Language: | English | | | | | | | | | | 13 | Mode of Delivery: | Face to | face | | | | | | | | | 14 | Course Coordinator: | Doç. Dr. | BURCU ÇAĞLAR GENÇOSMAN | | | | | | | | | 15 | Course Lecturers: | Doç.Dr. | Burcu ÇAĞLAR GENÇOSMAN | | | | | | | | | 16 | Contact information of the Course Coordinator: | e-posta: burcucaglar@uludag.edu.tr,
Telefon: + 90 (224) 294 09 16
Adress: Uludağ Üniversitesi, Mühendislik-Mimarlık Fakültesi,
Endüstri Mühendisliği Bölümü, Görükle Kampüsü, 16059 Nilüfer,
Bursa | | | | | | | | | | 17 | Website: | | | | | | | | | | | 18 | Objective of the Course: | Learning operations research techniques, and finding the best solution using the building-up analytical thinking approach. | | | | | | | | | | 19 | Contribution of the Course to Professional Development: | It's been planned to contribute to professional development by analyzing real life problems by scientific methods and offering solutions. | | | | | | | | | | 20 | Learning Outcomes: | | | | | | | | | | | | | 1 | Being able to solve linear programming problems using the simplex / atrificial starting solution / two phase simplex methods. | | | | | | | | | | | 2 | Having knowledge about special cases of the simplex algorithm, and being able to interpret the solutions and results. | | | | | | | | | | | 3 | Being able to perform sensitivity analysis on the solutions of linear programming models. | | | | | | | | | | | 4 | Being able to model and solve transportation problems and assignment problems. | | | | | | | | | | | 5 | Being able to model and solve network problems and CPM. | | | | | | | | | | | 6 | | | | | | | | | | | | 7 | | | | | | | | | | | | 8 | | | | | | | | | | | | 9 | | | | | | | | | | 04 | Course Content: | 10 | | | | | | | | | | 21 | Course Content: | | nuroa Cantanti | | | | | | | | | \\\\a\\\ | Theoretical | Co | ourse Content: | | | | | | | | | Week Theoretical Practice | | | | | | | | | | | | 1 | Introduction Solution of Linear Progra
Problems: Simplex Method -Standard
canonical forms -Introduction to simp | d and | Using MS Excel Solver for modeling linear programming problems. | | | | | | | | |----------------------------|---|-------------|--|---|-----------------------------|------------------------|--|--|--|--| | | algorithm | | | | | | | | | | | 2 | Solving linear programming problems simplex algorithm. | s using | Using MS Excel Solver for the solution of linear programming problems, and interpreting results. | | | | | | | | | 3 | Artifical Starting Solution (Big M Meth | nod) | Using Lindo for modeling and solving linear programming problems, interpreting results. | | | | | | | | | 4 | Two-Phase Simplex Method | | Using Lindo for modeling and solving linear programming problems, interpreting results. | | | | | | | | | 5 | Special Cases of Simplex Algorithm -
Degeneracy -Infeasibility -Unbounder
Solution Simplex algorithm for unbou
variables | d | Sensitivity analysis practices in Lindo | | | | | | | | | 6 | Sensitivity Analysis -Objective function coefficient changes -Right hand side | | Sensitivity analysis practices in Lindo | | | | | | | | | 7 | Sensitivity Analysis -Objective function coefficient changes -Right hand side | | | ow to download setup
ptimization Studio soft | | Cplex | | | | | | 8 | Duality Primal / Dual Problems / Varia
Primal / Dual Transformation Relation
between the Primal / Dual
Solutions/Complementary Slackness | ables
ns | How to use IBM ILOG Cplex Optimization Studio software | | | | | | | | | 9 | Introduction to transportation problem /balanced transportation problem / fir basic feasible solutions of transportations transportation problems | nding | Representation of parameters, decision variables and constraints in IBM ILOG Cplex Optimization Studio and some examples | | | | | | | | | 10
Activit | Transportation simplex algorithm tes | | | epresentation of paran
Number | Duration (hour) | | | | | | | Theore | ical | | sc | me examples | 3.00 | 42.00 | | | | | | Practic | als/Labs | | | 14 | 1.00 | 14.00 | | | | | | Self stu | Dioblems/Floyd algorithm/Dijkstra alg
dy and preperation
Minimum spanning troe problems /M: | ovimum | Ы | odolina solvina and in | 5.00 | 70.00
linear | | | | | | Homev | | | | 2 | 5.00 | 10.00 | | | | | | Pr ø j t ect | Review studies of OR I topics with ex | amples | Μ | 0 deling, solving and in | @ @ @ @ @ @ @ @ @ @ | 0in0e9ar | | | | | | Field S | tudies | | | 0 | 0.00 | 0.00 | | | | | | Mi zit err | Пежевою ks, References and/or Other | | 1. | Winston, W.L., Opera | t 7 o99 Research: Ap | ମାତିୟtions and | | | | | | Others | | | | 0 | 0.00 | 0.00 | | | | | | Final E | kams | | 2. | Hillier, F.S.; Lieberma | ศ | 7t ⊚ ©perations | | | | | | Total V | Vork Load | | | | | 157.00 | | | | | | Total w | Akseement hr | | 7 | | | 5.00 | | | | | | ECTS | Credit of the Course | | | | | 5.00 | | | | | | | _ | R | | | | | | | | | | | m Exam | 1 | 30.00 | | | | | | | | | Quiz | | 0 | 0.00 | | | | | | | | | 1 , | | | | 10.00 | | | | | | | | Final E | xam | 1 | 60.00 | | | | | | | | | Total | | 7 | 100.00 | | | | | | | | | | oution of Term (Year) Learning Activities
S Grade | es to | 40.00 | | | | | | | | | Contrib | oution of Final Exam to Success Grade |) | 60.00 | | | | | | | | | Total | | | 100.00 | | | | | | | | | Measu | • | sed in the | 1 Midterm Exam + 4 Homeworks + 1 Term Project + 1 Final Exam | | | | | | | | | 24 | ECTS | TS / WORK LOAD TABLE | | | | | | | | | | | | | | | |--|------|---|-----|-----|-------|-----|----------|-----|-----|----------|------|------|-------------|------|------|------| | 25 | | CONTRIBUTION OF LEARNING OUTCOMES TO PROGRAMME QUALIFICATIONS | | | | | | | | | | | | | | | | | PQ1 | PQ2 | PQ3 | PQ4 | PQ5 | PQ6 | PQ7 | PQ8 | PQ9 | PQ1
0 | PQ11 | PQ12 | PQ1
3 | PQ14 | PQ15 | PQ16 | | ÖK1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | | ÖK2 | 4 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | | ÖK3 | 3 | 3 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | | ÖK4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | | ÖK5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | | LO: Learning Objectives PQ: Program Qualifications | | | | | | | | | | | | | | | | | | Contrution
Leve | tion | | | 2 | 2 low | | 3 Medium | | | 4 High | | | 5 Very High | | | |